

International Forum for Aviation Research

Fumikazu Itoh IFAR Chairman

Japan Aerospace Exploration Agency (JAXA)

30th Congress of the International Council of the Aeronautical Sciences Daejeon, Korea September 29th, 2016

History & Objectives of IFAR

- Established in 2010
- 10 organizations (2010)
 - → 26 members (2016)

Objectives:

NETWORKING & INFORMATION EXCHANGE

IF/IR

TECHNICAL COOPERATION

EDUCATION OF
NEXT GENERATION OF
AERONAUTICAL RESEARCHERS

COMMUNICATION

IFAR Summit

2010 - Berlin (DLR)

2011 - Paris (ONERA)

2012 – Nagoya (JAXA)

2013 - Moscow (TsAGI)

2014 - Zhuhai (CAE)

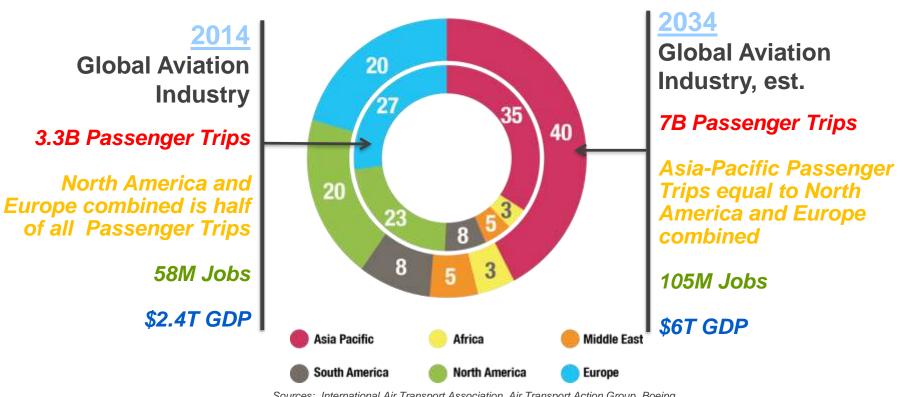
2015 – California (NASA)

IFAR Technical Activities – 5 Focus Areas

Non-competitive aviation research & development related to global technical challenges

Alternative Aviation Fuels

- → Alternative Fuel flight: NASA
- → Exhaust gas composition: NASA, DLR
- → Dynamics the DC-8 wake: NRC
- → Analysis and ground test of HEFA fuel: JAXA



Global Growth in Aviation Shifting to Asia-Pacific Region

Global Air Passengers by Region (% of Total)

Sources: International Air Transport Association, Air Transport Action Group, Boeing

Over 36,000 New Aircraft required over the 20 year period

Need for acceleration of ATM efficiency

Problems

- → Delays result in excess fuel/noise/emission, and lost productivity
- Operational needs are only addressed at regional level
- → ICAO Aviation System Block Upgrades (ASBU) 2 (2018) and 3 (2023) are not sufficiently defined
- > Limited research collaboration

Objective of IFAR ATM Working Group

- → 12 member initiative on ATM Operations to inform *ICAO* "Aviation System Block Upgrades (ASBU)" 2 and 3
- > Capture global challenges and research capabilities
- → Enable Collaboration

"Globally Addressing Air Traffic Management Challenges"

- 1. Regional perspectives from:
 - 1. North America (Dr. Jaiwon Shin, NASA)
 - 2. Europe (Mr. Michel Peters, NLR)
 - 3. Asia (Dr. Eung-Tai Kim, KARI)
- 2. IFAR's ATM Working Group activities (Akbar Sultan, NASA)

Cooperation is an essential building block for our common aviation future

IFAR Chair Fumikazu Itoh JAXA, Japan

IFAR Vice-Chair Michel Peters NLR, Netherlands

IFAR Past Chair Jaiwon Shin NASA, USA

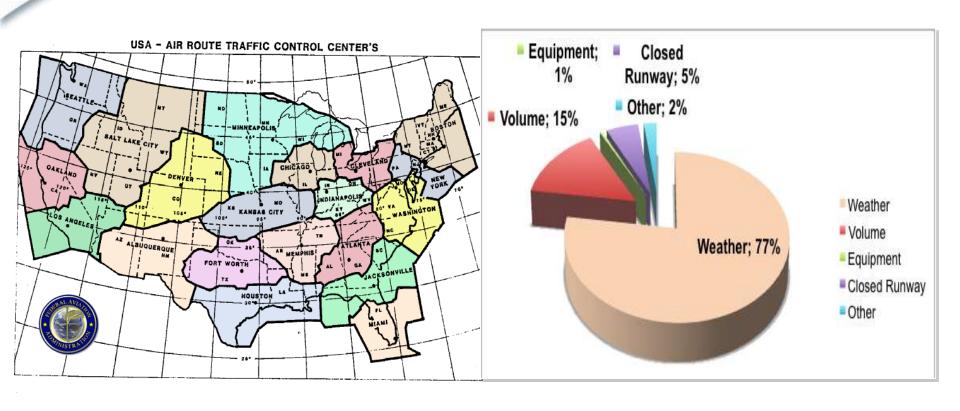
IFAR FounderJoachim Szodruch

Secretariat

E-Mail: info@ifar.aero Website: www.ifar.aero

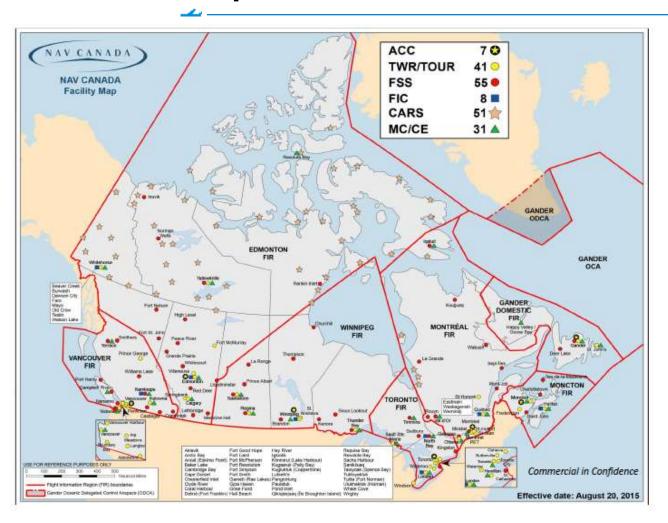
Please send your question via SMS to +49 162 269 2474

THANK YOU!


IFAR Air Transport Efficiency ATM Working Group

Regional Perspectives and impact of IFAR WG for Global Harmonization

For the 7th IFAR Summit and ICAS Daejeon, Korea



Operations: North and South America

Operations: North and South America

Operations: North and South America

Transformation: North and South America

Figure 1: Overview of NAS Far-Term Concept of Operations

Transformation: North and South America

NAV CANADA

Corporate Objectives

Safety record: top decile globally

ANS customer service charges: bottom quartile, and decline over long term

Modern, cost-efficient technology: top quartile

Provide value to our customers: improving operational efficiency through technology and service

People: create a productive and fulfilling workplace

Environment: Contribute to reduced aviation footprint

Operational Challenges

Weather uncertainty

Human workload limits capacity, throughput, and precision delivery

Interactions: arrivals, departures and surface

Prediction uncertainty (trajectory, aircraft count, aircraft location)

Mixed equipage

Trade-off between environment and capacity/throughput

Key Focus Areas

Dynamic Airspace Configuration to best balance supply to demand

Proactive collaboration with carriers and airports to maximize predictability and efficiency

Arrivals: integrated scheduling, sequencing, merging & spacing

Integrated arrival/departure operations

Surface operations optimization

Technology transition

Transformation: North and South America

ATM Implementation Plan

PCA 351-3 "National ATM Implementation Plan" PROJECT SIRIUS

PCA 351-3 PLANO DE IMPLEMENTAÇÃO ATM NACIONAL 2012

Latest version: March 2012

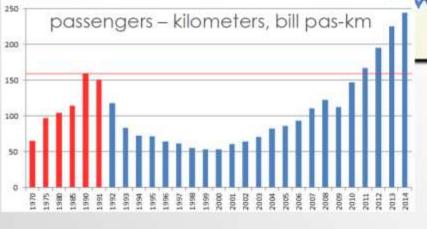
- Oriented to new technologies integration, development of solutions and application of new procedures to improve the aerial navigation services in the airspace under Brazilian responsability
 - · Rational use of the airspace
 - Improvement of the ATM efficiency
 - · Reduction of emissions
 - Reduction of noise
 - · Reduction of crew and controllers workload
 - Reduction of service costs
 - Improvement of the service quality

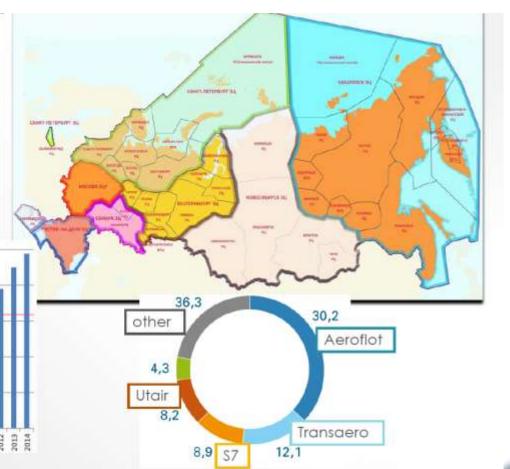
Research: North and South America

- NASA: in support of NextGen and beyond
 - Optimized pushback/taxi scheduling, and surface movement
 - Optimal Profile Descent and ADS-B enabled Terminal Spacing and Sequencing; Full Gate-to-gate TBO
 - Realtime Systemwide Safety Assurance
 - UAS Traffic Management
- NRC Canada and NavCanada
 - Working and traveling on aircraft
 - Enhanced Flight Deck Situational Awareness
 - Reduced Cabin & Flight Deck Energy Consumption
 - Crew Fatigue Monitoring and Mitigation
 - Prevent landing/takeoff runway excursions
- IAE, ICEA, and DECEA
 - Optimization of the FIR/UIR and ATS network ...RNP4 in the Atlantic region and RNP2 in the continental region
 - PBN Implementation on approach phases of flights; Remote ATS
 - Optimization of rotary wings special routes (Sao Paolo is one of the worlds busiest rotary wing air taxi hubs)
 - Integration of UAVs into non-segregated airspace

Please send your question via SMS to +49 162 269 2474

Operations: Europe





Operations: Europe

- · Length of airways is 678 507 km
- · Number of airways is 869
- 7 large and 29 regional ATM centers

Transformation: Europe

SESAR's performance ambition

- · Up to 6% reduction in flight time
- · Up to 10% reduction in fuel burn

ENVIRONMENT

- Up to 10% reduction in CO₂ emissions
 Positive impact on noise and air quality

Transformation: Europe

What is needed to achieve this ambition

Automation support

Automation and use of data communications

Integrated systems

Lean and modular systems, easily upgradable and interoperable

Integration of all vehicles

All air vehicles fully integrated in ATM environment (incl. RPAS)

Sharing of information

Information shared digitally via data services

Flight- and flow-centric operations

Airspace users fly their preferred business and mission trajectory in a flow and network context

Virtualisation

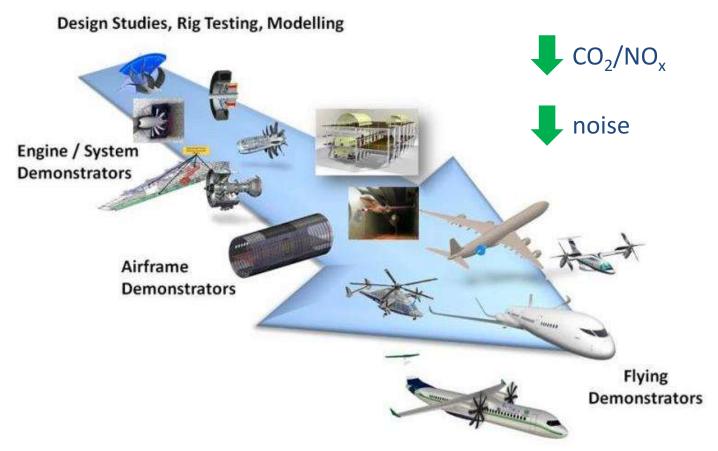
Virtualisation allowing more dynamic resource allocation

Four areas

Optimised ATM network services

High-performing airport operations

Advanced air traffic services


Enabling aviation infrastructure

Transformation: Europe

CleanSky

Developing new generations of greener aircraft

Research: Europe

NLR:

- Airport surface movement and conflict prediction/resolution
- Improvement navigation in low visibility; Enhanced Visual Operations (synthetic vision)
- RPAS surface operation integration

Onera:

- IESTA Environmental Modeling; 4D Trajectory Contract Management
- Very Low Altitude UAS Traffic Management

DLR:

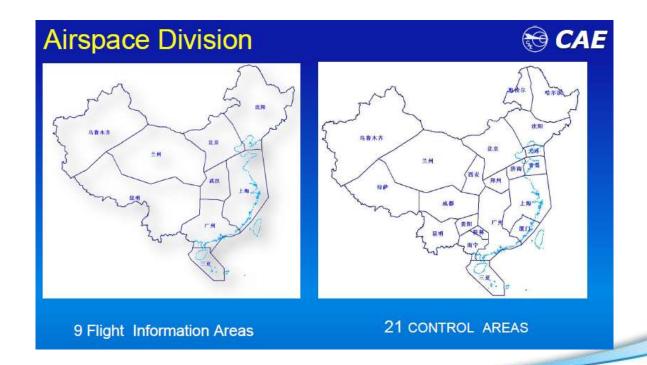
- Air Traffic Management and AMAN/DMAN/SMAN integration
- Remotely Piloted Aircraft Systems; Airport and Ground Traffic Management
- Validation Methodology

TsAGI:

- 4-D Trajectory Management; New instrumentation for air traffic controllers
- Aircraft icing; Wake Vortex Safety

• CIRA:

- Traffic Avoidance, Enhanced Collision Avoidance, Continuous Descent and Curved Approach
- 4D Trajectory Management; Airborne Merging and Spacing
- RPAS Integration


Please send your question via SMS to +49 162 269 2474

China

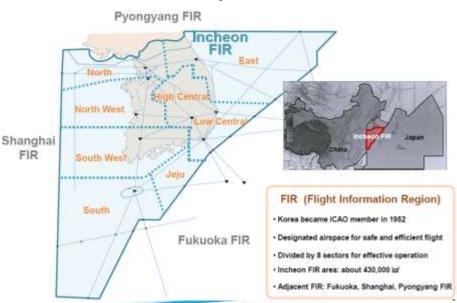
Operations: Asia

- Exponential aviation demand growth
- Increasing number of overflights between rest of Asia Pacific and Europe going through exponential growth

Japan

Operations: Asia

- Fukuoka FIR between US and Asia: flyover traffic about 15% of all air traffic
- International flights and over-flights increased
- The number of aircraft exceed air traffic control capacity around 2025
- Promotion of inbound tourism, and growth of Low Cost Carriers
- Short Domestic flights (< 2 hrs.)
- Efficiency of terminal operations

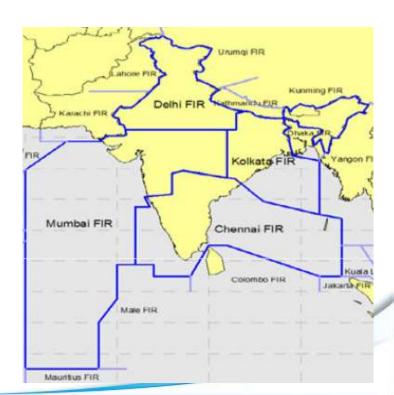

Korea

Operations: Asia

- **Extremely limited airspace**
- Two major airports close to each other
 - Short distance from Shanghai FIR Boundary with Incheon FIR
- Military and other restricted zones, in addition to the demilitarized zone and the capital area defense zone

FIR

- Very little airspace to maneuver for traffic and absorb delays
- High dependency on Japan and **China's ATM systems**
- Several air routes which are among the world's ten busiest air routes.



India

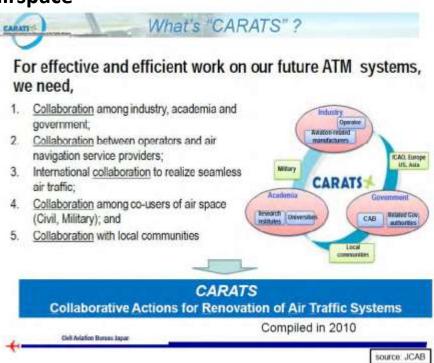
Operations: Asia

- Over 442 air access locations
- 80+ fully operational airports
- Evenly distributed across the country
- Some airport at higher elevations
- A few airports handle majority of the traffic
- Overflights for the Middle East to Asia, and Europe to Australia flight corridors
- 200,000 overflights with a mix of short and long routes (2014)

China

- ATM System Construction
- Airspace management reform
- ATM support capability
- ATM operation security
- The Goal: Move from
 - Civil and military aviation respective operation to coordinated operation

Transformation: Asia


- > Extensive airspace management to intensive pattern
- Large scale infrastructure construction to focus on efficiency

Japan

Transformation: Asia

- CARATS 2025 target
 - > Increase safety level 5 times
 - > Reduce fuel consumption and CO2 emissions per flight by 10%
 - Double ATC capacity in congested airspace
 - Improve service level by 10%

Transformation: Asia

South Korea

- Modernizing of air navigation system (CNS/ATM, aviation tech.)
- Future ATM plan (2011)
- Working group (Nov. 2011) as a group of researcher from academia and civil aviation organization → draft NAREA

Greener Airports	
OlTitle	2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x
Safety & Efficiency of Surface Operation	
Wake Turbulence Separation	
Arrival Traffic Synchronization	
Improving Pre-Departure Collaboration	
Airport Collaborative Decision Making Network	
Runway Management	
AMAN/DMAN	
Performance Improvement Are Globally Interoperable Systems and Date - Through Globally Interoperable System	
Performance Improvement Are Globally Interoperable Systems and Date	
Performance Improvement Are Globally Interoperable Systems and Date – Through Globally Interoperable System	Wide Information Management
Performance Improvement Are Globally Interoperable Systems and Date - Through Globally Interoperable System OI Title	Wide Information Management
Performance Improvement Are Globally Interoperable Systems and Date - Through Globally Interoperable System OI Title ATC Information Integration	Wide Information Management
Performance Improvement Are Globally Interoperable Systems and Date — Through Globally Interoperable System OI Title ATC Information Integration Transition from AIS to AIM	Wide Information Management

Optimum Capacity and Flexible Flight-	- Through Global Collaborative ATM
Ol Title	
Situational Awareness	
Optimizing Airspace Allocation and Usage	
Improvement of Air Traffic Flow	
Safety Nets Improvements (TMA, En Route)	
Flexible airspace management	
Flexible Route Network	
System Capacity Management Improvement	
Airspace Reclassification	
User preferred Routing Environment	
Developing System-wide Flow Model	
ASAS Self-separation	
Performance Improvement Ai Efficient Flight Path - Through Trajecto	
Offitie	
Enhancing Terminal Airspace	
Optimizing Climb/Descent(CCO/CDO)	
Arrival Traffic Synchronization	

Research: Asia

- CAE:
 - Communication
 - Performance based NAV (PBN)
 - Interval Management and Conflict Detection
- KARI:
 - Arrival and Departure Manager
 - UAS Integration into Controlled Airspace based on TBO concepts
 - ADS-B validation system
- JAXA:
 - Disaster-relief operations
 - Wake vortex and wind shear forecasting technology
 - Noise abatement operation technology
 - GPS/INS integrated navigation technology
- NAL:
 - Performance Based Navigation

Please send your question via SMS to +49 162 269 2474

■ Global Need for Coordination and Collaboration

- Both differences and similarities in operational challenges
- Similar goals and objectives in transformation of the ATM system
- Research efforts have similarities & complementary in nature

- Complementary collaboration
- Global harmonization
- Impact and inform global mid and long term roadmaps (national efforts & ICAO)

IFAR Air Traffic Management Working Group Progress

- Captured the regional operational environments, challenges, and modernization efforts
- Captured national R&D efforts and capability
- Identified potential areas of collaboration between members
 - Some bilateral engagement already underway
- Begin engagement with the national ICAO ATM Requirements and Performance Panel (RPP) representatives
- Begin informing ICAO ASBUs with research results
- Form a Users Forum of regulators, ANSPs, airlines, airports, and industry
 - Share results
 - Gain subject matter input
 - Collaborative activities and joint deliverables

Please send your question via SMS to +49 162 269 2474

ICAS-IFAR Award

- → To honor an individual who has made a significant contribution to Aeronautical Science within his/her doctoral thesis (Ph.D. or equivalent)
- → Eligibility:
 - → Within 2 years of the date after the PhD was obtained
 - → Under 40 years old at nomination date
- → Selected by IFAR Evaluation Team & ICAS Honors & Awards Committee
- → The 2016 Award Winner was selected out of 12 candidates nominated by IFAR members worldwide

